4.6 Review

The cellular and molecular biology of periprosthetic osteolysis

期刊

CLINICAL ORTHOPAEDICS AND RELATED RESEARCH
卷 -, 期 454, 页码 251-261

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/01.blo.0000238813.95035.1b

关键词

-

向作者/读者索取更多资源

The generation of prosthetic implant wear after total joint arthroplasty is recognized as the major initiating event in development of periprosthetic osteolysis and aseptic loosening, the leading complication of this otherwise successful surgical procedure. We review current concepts of how wear debris causes osteolysis, and report ideas for prevention and treatment. Wear debris primarily targets macrophages and osteoclast precursor cells, although osteoblasts, fibroblasts, and lymphocytes also may be involved. Molecular responses include activation of MAP kinase pathways, transcription factors (including NF kappa B), and suppressors of cytokine signaling. This results in up-regulation of proinflammatory signaling and inhibition of the protective actions of antiosteoclastogenic cytokines such as interferon gamma. Strategies to reduce osteolysis by choosing bearing surface materials with reduced wear properties should be balanced by awareness that reducing particle size may increase biologic activity. There are no approved treatments for osteolysis despite the promise of therapeutic agents against proinflammatory mediators (such as tumor necrosis factor) and osteoclasts (bisphosphonates and molecules blocking receptor activator of NFkappaB ligand [RANKL] signaling) shown in animal models. Considerable efforts are underway to develop such therapies, to identify novel targets for therapeutic intervention, and to develop effective outcome measures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据