4.5 Article

Physiologically based boundary conditions in finite element modelling

期刊

JOURNAL OF BIOMECHANICS
卷 40, 期 10, 页码 2318-2323

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jbiomech.2006.10.038

关键词

physiological boundary conditions; constraints; finite element; femoral loading

向作者/读者索取更多资源

Finite element analysis has been used extensively in the study of bone loading and implant performance, such as in the femur. The boundary conditions applied vary widely, generally producing excessive femoral deformation, and although it has been shown that the muscle forces influence femoral deflections and loading, little consideration has been given to the displacement constraints. It is hypothesised that careful application of physiologically based constraints can produce physiological deformation, and therefore straining, of the femur. Joint contact forces and a complete set of muscle forces were calculated based on the geometry of the Standardised Femur using previously validated musculoskeletal models. Five boundary condition cases were applied to a finite element model of the Standardised Femur: (A) diaphyseally constrained with hip contact and abductor forces; (B) case A plus vasti forces; (C) case A with complete set of muscle forces; (D) distally constrained with all muscle forces; (E) physiological constraints with all muscle forces. It was seen that only the physiological boundary conditions, case E, produced physiological deflections (<2.0 mm) of the femoral head in both the coronal and sagittal planes, which resulted in minimal reaction forces at the constrained nodes. Strains in the mid-diaphysis varied by up to 600 mu-strain under walking loads and 1000 p-strain under stair climbing loads. The mode of loading, as indicated by the strain profiles on the cortex also varied substantially under these boundary conditions, which has important consequences for studies that examine localised bone loading such as fracture or bone remodelling simulations. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据