4.5 Article

Functional proteomic view of metabolic regulation in Aromatoleum aromaticum strain EbN1

期刊

PROTEOMICS
卷 7, 期 13, 页码 2222-2239

出版社

WILEY
DOI: 10.1002/pmic.200600987

关键词

anaerobic biodegradation; aromatic compounds; fluorescence two-dimensional; difference gel electrophoresis; functional proteomics; mass spectrometry

向作者/读者索取更多资源

The denitrifying Aromatoleum aromaticuid' strain EbN1 utilizes a wide range of aromatic and nonaromatic compounds under anoxic and oxic conditions. The recently determined genome revealed corresponding degradation pathways and predicted a fine-tuned regulatory network. In this study, differential proteomics (2-D DIGE and MS) was used to define degradation pathway-specific subproteomes and to determine their growth condition dependent regulation. Differential protein profiles were determined for cultures adapted to growth under 22 different substrate and redox conditions. In total, 354 different proteins were identified, 199 of which displayed significantly changed abundances. These regulated proteins mainly represented enzymes of the different degradation pathways, and revealed different degrees of growth condition specific regulation. In case of three substrate conditions (e.g. phenylalanine, anoxic), proteins previously predicted to be involved in their degradation were apparently not involved (e.g. Pdh, phenylacetaldehyde dehydrogenase). Instead, previously not considered proteins were specifically increased in abundance (e.g. EbA5005, predicted aldehyde:ferredoxin oxidoreductase), shedding new light on the respective pathways. Moreover, strong evidence was obtained for thus far unpredicted degradation pathways of three hitherto unknown substrates (e.g. o-aminobenzoate, anoxic). Comparing all identified regulated and nonregulated proteins provided first insights into regulatory hierarchies of special degradation pathways versus general metabolism in strain EbN1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据