4.4 Article

Reduced redox potential of the cytosol is important for African swine fever virus capsid assembly and maturation

期刊

JOURNAL OF GENERAL VIROLOGY
卷 88, 期 -, 页码 77-85

出版社

MICROBIOLOGY SOC
DOI: 10.1099/vir.0.82257-0

关键词

-

向作者/读者索取更多资源

Assembly of African swine fever virus (ASFV) involves the transfer of the major capsid protein, p73, from the cytosol onto the cytoplasmic face of endoplasmic reticulum-derived membranes. During this process, the folding of p73 is dependent upon transient association with a specific viral chaperone, CAP80. The cell cytoplasm maintains high concentrations of reduced glutathione, leading to a reducing environment. Here, the effects of redox environment on the assembly of ASFV have been studied. Diamide, which oxidizes the cell cytosol, slowed the folding of p73 and prevented release from CAP80 and subsequent binding of p73 to membranes. Similarly, cell oxidation slowed the assembly of p73 molecules already bound to membranes into virus capsid precursors. Interestingly, addition of oxidized glutathione to newly assembled virus capsid precursors in vitro led to disassembly; however, virus particles released from cells were resistant to oxidized glutathione. These data show that assembly of ASFV requires the reducing environment that prevails in the cytosol, but as the virus matures, it becomes resistant to oxidation, possibly indicating preparation for release from the cell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据