4.7 Article

Sucrose supply to nematode-induced syncytia depends on the apoplasmic and symplasmic pathways

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 58, 期 7, 页码 1591-1601

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erl285

关键词

AtSUC2; AtSUC4; Heterodera schachtii; nematode; plasmodesmata; sucrose transporter

向作者/读者索取更多资源

The plant parasitic nematode Heterodera schachtii induces syncytial feeding structures in the roots of host plants. Nematode-induced syncytia become strong sink tissues in the plant solute circulation system as the parasites start withdrawing nutrients. In the present work, the expression pattern of the phloem-specific sucrose transporter AtSUC4 (also described as AtSUT4) is analysed in syncytia induced by H. schachtii and it is compared with that of AtSUC2, another phloem-specific sucrose transporter, which is expressed in syncytia. The temporal expression pattern was monitored by GUS-tests and real-time RTPCR, while the localization within the syncytia was performed using in situ RT-PCR. In this context, the concentration of sucrose in infection sites was also analysed and, in fact, an increase in response to syncytium development was found. Silencing of the AtSUC4 gene finally resulted in a significant reduction of female nematode development, thus demonstrating a function for this gene for the first time. It is therefore concluded, that AtSUC4 plays a significant role in the early phase of syncytium differentiation when functional plasmodesmata to the phloem are not yet established. It is further concluded that, during syncytium establishment, transporters are responsible for sucrose supply and, at a later stage, when a connection to the phloem is established via plasmodesmata, transporters are required for sucrose retrieval.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据