4.6 Article

The fate of photosynthetically-fixed carbon in Lolium perenne grassland as modified by elevated CO2 and sward management

期刊

NEW PHYTOLOGIST
卷 173, 期 4, 页码 766-777

出版社

WILEY
DOI: 10.1111/j.1469-8137.2007.01966.x

关键词

carbon cycle; carbon partitioning; carbon sequestration; climate change; defoliation; free air carbon dioxide enrichment (FACE); nitrogen; rhizodeposition

向作者/读者索取更多资源

Prediction of the impact of climate change requires the response of carbon (C) flow in plant-soil systems to increased CO2 to be understood. A mechanism by which grassland C sequestration might be altered was investigated by pulse-labelling Lolium perenne swards, which had been subject to CO2 enrichment and two levels of nitrogen (N) fertilization for 10 yr, with (CO2)-C-14. Over a 6-d period 40-80% of the C-14 pulse was exported from mature leaves, 1-2% remained in roots, 2-7% was lost as below-ground respiration, 0.1% was recovered in soil solution, and 0.2-1.5% in soil. Swards under elevated CO2 with the lower N supply fixed more C-14 than swards grown in ambient CO2, exported more fixed C-14 below ground and respired less than their high-N counterparts. Sward cutting reduced root C-14, but plants in elevated CO2 still retained 80% more C-14 below ground than those in ambient CO2. The potential for below-ground C sequestration in grasslands is enhanced under elevated CO2, but any increase is likely to be small and dependent upon grassland management.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据