4.6 Article

Increased trehalose biosynthesis in Hartig net hyphae of ectomycorrhizas

期刊

NEW PHYTOLOGIST
卷 174, 期 2, 页码 389-398

出版社

WILEY
DOI: 10.1111/j.1469-8137.2007.01983.x

关键词

ectomycorrhiza; enzyme activity; gene expression; trehalose; trehalose-6-phosphate-phosphatase; trehalose-6-phosphate synthase; trehalose phosphorylase

向作者/读者索取更多资源

To obtain photoassimilates in ectomycorrhizal symbiosis, the fungus has to create a strong sink, for example, by conversion of plant-derived hexoses into fungus-specific compounds. Trehalose is present in large quantities in Amanita muscaria and may thus constitute an important carbon sink. In Amanita muscaria-poplar (Populus tremula x tremuloides) ectomycorrhizas, the transcript abundances of genes encoding key enzymes of fungal trehalose biosynthesis, namely trehalose-6-phosphate synthase (TPS), trehalose-6-phosphate phosphatase (TPP) and trehalose phosphorylase (TP), were increased. When mycorrhizas were separated into mantle and Hartig net, TPS, TPP and TP expression was specifically enhanced in Hartig net hyphae. Compared with the extraradical mycelium, TPS and TPP expression was only slightly increased in the fungal sheath, while the increase in the expression of TP was more pronounced. TPS enzyme activity was also elevated in Hartig net hyphae, displaying a direct correlation between transcript abundance and turnover rate. In accordance with enhanced gene expression and TPS activity, trehalose content was 2.7 times higher in the Hartig net. The enhanced trehalose biosynthesis at the plant-fungus interface indicates that trehalose is a relevant carbohydrate sink in symbiosis. As sugar and nitrogen supply affected gene expression only slightly, the strongly increased expression of the investigated genes in mycorrhizas is presumably developmentally regulated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据