4.3 Article

Structural analysis and prediction of protein mutant stability using distance and torsion potentials: Role of secondary structure and solvent accessibility

期刊

出版社

WILEY-LISS
DOI: 10.1002/prot.21115

关键词

protein thermostability; statistical potentials; torsion angle potential; point mutation; protein stability prediction

向作者/读者索取更多资源

Analyzing the factors behind protein stability is a key research topic in molecular biology, and has direct implications on protein structure prediction and protein-protein interactions. We have analyzed protein stability upon point mutations using A distance-dependant pair potential representing mainly through-space interactions, and torsion angle potential representing mainly neighboring effects as a basic statistical mechanical setup for the analysis. The synergetic effect of accessible surface area and secondary structure preferences was used as a classifier for the potentials. In addition, short-, medium-, and long-range interactions of the protein environment were also analyzed. Two datasets of point mutations were taken for the comparison of theoretically predicted stabilizing energy values with experimental Delta Delta G and Delta Delta GH(2)O from thermal and chemical denaturation experiments. These include 1538 and 1603 mutations, respectively, and contain 101 proteins that share a wide range of sequence identity. The resulting force fields were carefully evaluated with different statistical tests. Results show a maximum correlation of 0.87 with a standard error of 0.71 kcal/mol between predicted and measured Delta Delta G values and a prediction accuracy of 85.3% (stabilizing or destabilizing) for all mutations together. A correlation of 0.77 (more than 80% prediction accuracy with a standard error of 0.95 kcaF mol) each for the test dataset of split-sample validation and fivefold crossvalidation was obtained and a correlation of 0.70 (77.4% prediction accuracy with a standard error of 1.17 kcal/mol) was shown by the jackknife test. The same model was implemented, and the results were analyzed for mutations with Delta Delta GH(2)O. A correlation of 0.78 (standard error 0.96 kcal/mol) was observed with a prediction efficiency of 84.65%. This model can be used for the future prediction of protein structural stability together with various experimental techniques. Proteins 2007;66:41-52. (c) 2006 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据