4.7 Article

Root hair curling and Rhizobium infection in Medicago truncatula are mediated by phosphatidylinositide-regulated endocytosis and reactive oxygen species

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 58, 期 7, 页码 1637-1649

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erm013

关键词

endocytosis; phosphatidylinositol-3 kinase; reactive oxygen species

向作者/读者索取更多资源

The symbiotic relationships between legumes and rhizobacteria involve extensive signalling between the two organisms. Studies using genetic, biochemical, and pharmacological approaches have demonstrated the involvement of calcium and reactive oxygen species in the establishment of symbiotic interactions. In the early stage of the interactions rhizobia grow as infection thread within host root hairs and are internalized into the plant cells via endocytosis. It is shown here that inoculation of Medicago truncatula roots with Sinorhizobium meliloti induced a battery of vesicle trafficking genes, including the phosphatidylinositol 3-kinase (PI3K) gene that stimulated plasma membrane endocytosis and the production of reactive oxygen species (ROS). Inhibition of the PI3K suppressed the membrane endocytosis and subsequent oxidative burst and prevented root hair curling and formation of infection threads. Similar effects were produced by inhibition of Ptdins-specific phospholipase C (PI-PLC). However, neither inhibition of PI3K nor PI-PLC signalling blocked cytosolic Ca2+ influx or early nodulin (ENOD) gene expression. By contrast, the inhibitors induced ENODs transcription in the absence of Rhizobium, suggesting that the expression of ENODs responds to plasma membrane perturbations. In summary, the results show a major reprogramming of intracellular vesicle trafficking during the early stages of symbiotic interactions that co-ordinate the host responses. Activation of parallel signalling pathways leading to Ca-cyt(2+) influx and ROS production that regulate the root hair curling and ENODs expression are also shown.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据