4.5 Article

In silico prediction of pregnane X receptor activators by machine learning approaches

期刊

MOLECULAR PHARMACOLOGY
卷 71, 期 1, 页码 158-168

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.106.027623

关键词

-

向作者/读者索取更多资源

Pregnane X receptor (PXR) regulates drug metabolism and is involved in drug-drug interactions. Prediction of PXR activators is important for evaluating drug metabolism and toxicity. Computational pharmacophore and quantitative structure-activity relationship models have been developed for predicting PXR activators. Because of the structural diversity of PXR activators, more efforts are needed for exploring methods applicable to a broader spectrum of compounds. We explored three machine learning methods (MLMs) for predicting PXR activators, which were trained and tested by using significantly higher number of compounds, 128 PXR activators (98 human) and 77 PXR nonactivators, than those of previous studies. The recursive feature-selection method was used to select molecular descriptors relevant to PXR activator prediction, which are consistent with conclusions from other computational and structural studies. In a 10-fold cross-validation test, our MLM systems correctly predicted 81.2 to 84.0% of PXR activators, 80.8 to 85.0% of hPXR activators, 61.2 to 70.3% of PXR nonactivators, and 67.7 to 73.6% of hPXR nonactivators. Our systems also correctly predicted 73.3 to 86.7% of 15 newly published hPXR activators. MLMs seem to be useful for predicting PXR activators and for providing clues to physicochemical features of PXR activation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据