4.7 Article

Diffuse interseismic deformation across the Pacific-North America plate boundary

期刊

GEOLOGY
卷 35, 期 4, 页码 311-314

出版社

GEOLOGICAL SOC AMERICA, INC
DOI: 10.1130/G22938A.1

关键词

crustal deformation; plate motion; San Andreas fault; viscoclastic model; deformation asymmetry

类别

向作者/读者索取更多资源

Crustal movements and deformation within the diffuse Pacific-North America (Pa-NA) plate boundary are dominated by the right-lateral motion between the two plates. By using the Pa-NA pole of rotation (PoR) spherical coordinate system, we decompose observed crustal movements into parallel and normal components to the Pa-NA plate motion. We transformed the 840 velocity vectors of the Southern California Earthquake Center (SCEC) 3.0 velocity field into the Pa-NA PoR system in order to characterize the interseismic velocity across the plate boundary. Our results show that despite the very different deformation styles occurring across the San Andreas fault, the fault trace follows the half plate motion contour. Deviation occurs in the southern section, where the half motion contour correlates with the San Jacinto and Imperial fault segments. Our analysis yields interesting asymmetric patterns in both parallel and normal components. The parallel component shows asymmetrical velocity gradients across the San Andreas fault, and the normal component indicates compression southwest of the Big Bend, but not northeastward. The observations are compared with viscoelastic modeling results, which show a similar velocity field. The main disagreements between the observations and the model are in a narrow band along the San Andreas fault and in the Mojave block, suggesting that crustal heterogeneities and additional unmodeled fault segments should be considered in future models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据