4.7 Review

Microtubule-induced cortical cell polarity

期刊

GENES & DEVELOPMENT
卷 21, 期 5, 页码 483-496

出版社

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1101/gad.1511207

关键词

GEF; Dlg; Khc-73; microtubule; neuroblast; polarity

向作者/读者索取更多资源

Most cells are polarized. Embryonic and stem cells can use their polarity to generate cell diversity by asymmetric cell division, whereas differentiated cells use their polarity to execute specific functions. For example, fibroblasts form an actin-rich leading edge required for cell migration, neurons form distinctive axonal and dendritic compartments important for directional signaling, and epithelial cells have apical and basolateral cortical domains necessary for maintaining tissue impermeability. It is well established that actin and actin-associated proteins are essential for generating molecular and morphological cell polarity, but only recently has it become accepted that microtubules can induce and/ or maintain polarity. One common feature among different cell types is that microtubules can establish the position of cortical polarity, but are not required for cortical polarity per se. In this review, we discuss how different cell types utilize microtubules and microtubule-associated signaling pathways to generate cortical cell polarity, highlight common mechanisms, and discuss open questions for directing future research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据