4.2 Review

Energy metabolism and cytochrome oxidase activity: linking metabolism to gene expression

期刊

CANADIAN JOURNAL OF ZOOLOGY
卷 92, 期 7, 页码 557-568

出版社

CANADIAN SCIENCE PUBLISHING
DOI: 10.1139/cjz-2013-0267

关键词

mitochondria; energetics; gene expression; hypoxia; cytochrome c oxidase; metabolism

类别

资金

  1. Canadian Science Publishing

向作者/读者索取更多资源

Modification of mitochondrial content demands the synthesis of hundreds of proteins encoded by nuclear and mitochondrial genomes. The responsibility for coordination of this process falls to nuclear-encoded master regulators of transcription. DNA-binding proteins and coactivators integrate information from energy-sensing pathways and hormones to alter mitochondrial gene expression. In mammals, the signaling cascade for mitochondrial biogenesis can be described as follows: hormonal signals and energetic information are sensed by protein-modifying enzymes that in turn regulate the post-translational modification of transcription factors. Once activated, transcription-factor complexes form on promoter elements of many of the nuclear-encoded mitochondrial genes, recruiting proteins that remodel chromatin and initiate transcription. One master regulator in mammals, PGC-1 alpha, is well studied because of its role in determining the metabolic phenotype of muscles, but also due to its importance in mitochondria-related metabolic diseases. However, relatively little is known about the role of this pathway in other vertebrates. These uncertainties raise broader questions about the evolutionary origins of the pathway and its role in generating the diversity in muscle metabolic phenotypes seen in nature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据