4.5 Article

Glutamine signalling in bacteria

期刊

FRONTIERS IN BIOSCIENCE-LANDMARK
卷 12, 期 -, 页码 358-370

出版社

FRONTIERS IN BIOSCIENCE INC
DOI: 10.2741/2069

关键词

microbiology; bacteria; nitrogen regulation; PII signalling; glutamine symthetase; GlnD; review

向作者/读者索取更多资源

Glutamine is a metabolite of central importance in bacterial physiology. In addition to its function as one of the 20 standard amino acids in protein synthesis, glutamine is required for the biosynthesis of a variety of nitrogen-containing compounds. Of particular importance is glutamine synthesis as primary reaction of ammonium assimilation. Because of this versatile role, glutamine metabolism is tightly controlled in response to the cellular nitrogen status in bacteria. Recent progress in elucidating the molecular basis of nitrogen signalling has shed light on the role of glutamine as a signalling molecule. Bacteria belonging to the phylogenetic domains of proteobacteria and low G+C Gram- positives ( firmicutes) have evolved different mechanisms to monitor glutamine as an indicator of the state of nitrogen metabolism, which then regulates nitrogen metabolism at the transcriptional and post-transcriptional levels. Using the conserved PII signal transduction system, major groups of prokaryotes, including the cyanobacteria, have evolved yet another strategy to monitor the cellular nitrogen status, which relies on 2- oxoglutarate instead of glutamine as the signalling molecule. In addition to monitoring the intracellular glutamine level, bacteria may respond to extracellular glutamine, which is used as a nutrient. This overview details our current knowledge of glutamine- regulated processes in bacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据