4.7 Article

Endothelial nitric oxide synthase activation leads to dilatory H2O2 production in mouse-cerebral arteries

期刊

CARDIOVASCULAR RESEARCH
卷 73, 期 1, 页码 73-81

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cardiores.2006.10.005

关键词

endothelial function; nitric oxide; microcirculation; oxygen radicals

资金

  1. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM031278] Funding Source: NIH RePORTER
  2. NIGMS NIH HHS [GM31278] Funding Source: Medline

向作者/读者索取更多资源

Objective: Hydrogen peroxide (H2O2) produced by the vascular endothelium is a signaling molecule regulating vascular tone. We hypothesized that H2O2 derived from eNOS activity could play a physiological role in endothelium-dependent dilation of mouse cerebral arteries. Methods: Simultaneous endothelium-dependent dilation and fluorescence-associated free radical (DCF-DA) or NO (DAF-2) production were recorded in isolated and pressurized (60 mm Hg) cerebral artery of C57B1/6 male mice. Results: Without synergism, N-nitro-L-arginine (L-NNA) or the H2O2 scavengers catalase, PEG-catalase and pyruvate reduced (P < 0.05) by 50% the endothelium-dependent dilation induced by acetylcholine (ACh). Simultaneously with the dilation, H2O2 - but not NO - production, sensitive to either L-NNA or catalase, was detected. In cerebral arteries from C57B1/6-eNOS(-/-) mice, catalase had no effect on ACh-induced dilation and no H2O2-associated fluorescence was observed. In C57B1/6 mice, silver diethyldithiocarbamate (DETC), a superoxide dismutase (SOD) inhibitor, but not the specific NO scavenger 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl3-oxide (PTIO), prevented ACh-induced dilation and H2O2 production suggesting that eNOS-derived superoxide is an intermediate in the production of H2O2. The catalase-sensitive ACh-induced dilation was restored by the eNOS cofactor tetrahydrobiopterin (BH4). This reversal was associated with a NO-associated fluorescence sensitive to PTIO but not to catalase. Soluble guanylate cyclase inhibition with 1H-[1,2,4]-oxadiazole-4,3-aquinoxalin-1-one (ODQ) prevented the dilation induced by ACh and by exogenous H2O2. Lastly, L-NNA, PTIO and ODQ but not DETC, catalase or pyruvate - increased the pressure-dependent myogenic tone, suggesting that eNOS produces NO at rest, but leads to H2O2 during muscarinic stimulation. Conclusion: H2O2-dependent dilation in mouse cerebral arteries appears to be a physiological eNOS-derived mechanism. (c) 2006 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据