4.6 Article Proceedings Paper

Hotspot-limited microprocessors: Direct temperature and power distribution measurements

期刊

IEEE JOURNAL OF SOLID-STATE CIRCUITS
卷 42, 期 1, 页码 56-65

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSSC.2006.885064

关键词

cooling; integrated circuit design; integrated circuit layout; microprocessor testing

向作者/读者索取更多资源

An experimental technique is presented, which allows for spatially-resolved imaging of microprocessor power (SIMP). In a first step this method utilizes infrared (IR) thermal imaging, while the processor is effectively cooled using an IR-transparent heat sink. In the second step the underlying power distribution is derived by determining the temperature fields for each individual power source on the chip. The measured chip temperature distribution is represented as a superposition of these temperature fields. The SIMP data reveals significant temporal and spatial variations of the microprocessor power/temperature distribution, which can be attributed to the circuit layout as well as to the varying utilization levels across the processor while running full workloads. In this paper we have applied the SIMP method to the dual core PowerPC (TM) 970MP microprocessor to measure detailed temperature and power distributions under full operating conditions. In the first part of the paper the impact of power and temperature limitations of high performance CMOS chips is discussed in detail, where we distinguish between hotspot-limited (or temperature-limited) and power-limited chips. The discussion shows the importance of temperature and power distributions for chip floor planning, layout, design and architecture. Second, we present the experimental details of the SIMP method, which is applied to the dual core PowerPC970MP to directly measure the temperature and power fields as a function of workload and frequency. A pronounced movement of the hotspot location is observed. Finally, the hotspot of a competitive microprocessor is compared by measuring temperature efficiencies (temperature increase/performance) for the same workloads and cooling conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据