4.8 Article

Imaging cellular network dynamics in three dimensions using fast 3D laser scanning

期刊

NATURE METHODS
卷 4, 期 1, 页码 73-79

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NMETH989

关键词

-

向作者/读者索取更多资源

Spatiotemporal activity patterns in three-dimensionally organized cellular networks are fundamental to the function of the nervous system. Despite advances in functional imaging of cell populations, a method to resolve local network activity in three dimensions has been lacking. Here we introduce a three-dimensional (3D) line-scan technology for two-photon microscopy that permits fast fluorescence measurements from several hundred cells distributed in 3D space. We combined sinusoidal vibration of the microscope objective at 10 Hz with 'smart' movements of galvanometric x-y scanners to repeatedly scan the laser focus along a closed 3D trajectory. More than 90% of cell somata were sampled by the scan line within volumes of 250 mu m side length. Using bulk-loading of calcium indicator, we applied this method to reveal spatiotemporal activity patterns in neuronal and astrocytic networks in the rat neocortex in vivo. Two-photon population imaging using 3D scanning opens the field for comprehensive studies of local network dynamics in intact tissue. (c) 2007 Nature Publishing Group.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据