4.7 Article

Endocannabinoids in adipocytes during differentiation and their role in glucose uptake

期刊

CELLULAR AND MOLECULAR LIFE SCIENCES
卷 64, 期 2, 页码 219-229

出版社

SPRINGER BASEL AG
DOI: 10.1007/s00018-006-6445-4

关键词

differentiation; endocannabinoid system; energy homeostasis; glucose transport; receptor; signal transduction

向作者/读者索取更多资源

The molecular basis for the control of energy balance by the endocannabinoid anandamide (AEA) is still unclear. Here, we show that murine 3T3-L1 fibroblasts have the machinery to bind, synthesize and degrade AEA, and that their differentiation into adipocytes increases by approximately twofold the binding efficiency of cannabinoid receptors (CBR), and by approximately twofold and approximately threefold, respectively, the catalytic efficiency of the AEA transporter and AEA hydrolase. In contrast, the activity of the AEA synthetase and the binding efficiency of vanilloid receptor were not affected by the differentiation process. In addition, we demonstrate that AEA increases by approximately twofold insulin-stimulated glucose uptake in differentiated adipocytes, according to a CB1R-dependent mechanism that involves nitric oxide synthase, but not lipoxygenase or cyclooxygenase. We also show that AEA binding to peroxisome proliferator-activated receptor-gamma, known to induce differentiation of 3T3-L1 fibroblasts into adipocytes, is not involved in the stimulation of glucose uptake.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据