4.6 Article

Characterization of microstructures across the heat-affected zone of the modified 9Cr-1 Mo weld joint to understand its role in promoting type IV cracking

向作者/读者索取更多资源

In the postweld heat-treated (PWHT) fusion welded modified 9Cr-1Mo steel joint, a soft zone was identified at the outer edge of the heat-affected zone (HAZ) of the base metal adjacent to the deposited weld metal. Hardness and tensile tests were performed oil the base metal subjected to soaking for 5 minutes at temperatures below Ac(1) to above Ac(3) and tempering at the PWHT condition. These tests indicated that the soft zone in the weld joint corresponds to the intercritical region of HAZ. Creep tests were conducted on the base metal and cross weld joint. At relatively lower stresses and higher test temperatures, the weld joint possessed lower creep rupture life than the base metal, and the difference in creep rupture life increased with the decrease in stress and increase in temperature. Preferential accumulation of creep deformation coupled with extensive creep cavitation in the intercritical region of HAZ led to the premature failure of the weld joint in the intercritical region of the HAZ, commonly known as type IV cracking. The microstructures across the HAZ of the weld joint have been characterized to understand the role of microstructure in promoting type IV cracking. Strength reduction in the intercritical HAZ of the joint resulted from the combined effects of coarsening of dislocation substructures and precipitates. Constrained deformation of the soft intercritical HAZ sandwich between relatively stronger constitutes of the joint induced creep cavitation in the soft zone resulting in premature failure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据