4.7 Article

The lysosome or lysosome-related organelle may serve as a Ca2+ store in the boutons of hippocampal pyramidal cells

期刊

NEUROPHARMACOLOGY
卷 52, 期 1, 页码 126-135

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropharm.2006.07.029

关键词

lysosome; pyramidal cell; bouton; hippocampus; Ca2+

资金

  1. MRC [G0501572] Funding Source: UKRI
  2. Medical Research Council [G0501572] Funding Source: Medline

向作者/读者索取更多资源

Boutons are specialised presynaptic compartments that lie along the axons of central neurons. Release of neurotransmitter from boutons is tightly regulated by the level of intracellular calcium [Ca2+](i), A rise in Ca2+ level may be generated in several ways; entry of extracellular Ca2+ via voltage gated calcium channels (VGCCs), entry via ligand-operated channels (LOCs) or the release of Ca2+ from intracellular Ca2+ stores. The role of Ca2+ stores in boutons remains poorly understood, despite recent work indicating that the release of Ca2+ from the endoplasmic reticulum (ER) may contribute to transmitter release. In this study we assess whether the lysosome or a closely related organelle functions as a Ca2+ store in the boutons of hippocampal pyramidal neurones. Lysosomes are small acidic organelles more commonly known for their role in degrading redundant cellular constituents. Using a fluorescent lysosomal marker, we show that lysosomes are located in the axons of hippocampal CA3 neurones. Selective pharmacological lysis of the lysosomes with glycyl-phenylalanine 2-napthylamide (GPN) generates rapid, highly focal Ca2+ transients within the axon and increases the frequency of spontaneous miniature excitatory post-synaptic currents (mEPSCs), revealing that the organelle contains Ca2+ at a concentration sufficient to evoke transmitter release. Confocal laser scanning microscopy, combined with electrophysiology is used to monitor the action potential evoked increases in [Ca2+](i) in boutons. We show that disruption of lysosomes compromises action potential evoked [Ca2+](i) but this effect is occluded if the ER is discharged. Conversely, disruption of the lysosome does not appear to impact on the capacity of the ER to release Ca2+. These results suggest that the lysosome may serve as a Ca2+ store within hippocampal boutons, with a Ca2+ signalling role that is unique from that of the ER. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据