4.6 Article

Organic nanodots for multiphotonics: synthesis and photophysical studies

期刊

NEW JOURNAL OF CHEMISTRY
卷 31, 期 7, 页码 1354-1367

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b702452p

关键词

-

向作者/读者索取更多资源

Organic nanodots based on the gathering of an exponentially increasing number of two-photon fluorophores on a dendritic platform of controlled size and symmetry represent a promising nontoxic alternative to quantum dots for (bio)imaging purposes. This modular route offers a number of advantages in terms of versatility but also raise a number of questions to be addressed. In particular, possible interactions between fluorophores, due to confinement effects, have to be taken into account. With this aim in mind we have investigated and compared the photophysical and two-photon absorption (TPA) properties of two series of organic nanodots of different geometries: spherical-like organic nanodots derived from a dendritic scaffold built from a cyclotriphosphazene core and dumbbell-like organic nanodots derived from a dendritic scaffold built from an elongated rod-like chromophore. The study provides evidence that the different topology and nature of the dendritic architecture lead to significant changes in photoluminescence characteristics as well as to subtle variations of the TPA efficiency. As a result, the dumbbell-like nanodots although less promising in terms of two-photon induced fluorescence (due to partial quenching of fluorescence efficiency) also demonstrate that improvement of the TPA efficiency can be achieved by playing on the nature and topology of the dendritic scaffold of the nanodots.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据