4.7 Article

Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG

期刊

BRAIN
卷 130, 期 -, 页码 65-77

出版社

OXFORD UNIV PRESS
DOI: 10.1093/brain/awl304

关键词

correlation structure; eigenvalue spectrum; intracranial EEG; multivariate time series analysis; seizure termination

向作者/读者索取更多资源

Epileptic seizures are commonly characterized as 'hypersynchronous states'. This habit is doubly misleading, because seizures are not necessarily synchronous and are not unchanging 'states' but dynamic processes. Here the temporal evolution of the correlation structure in the course of 100 focal onset seizures of 60 patients recorded by intracranial multichannel EEG was assessed. To this end a multivariate method was applied that at its core consists of computing the eigenvalue spectrum of the zero-lag correlation matrix of a short sliding window. Our results show that there are clearly observable and statistically significant changes of the correlation structure of focal onset seizures. Specifically, these changes indicate that the zero-lag correlation of multi-channel EEG either remains approximately unchanged or-especially in the case of secondary generalization-decreases during the first half of the seizures. Then correlation gradually increases again before the seizures terminate. This development was qualitatively independent of the anatomical location of the seizure onset zone and therefore seems to be a generic property of focal onset seizures. We suggest that the decorrelation of EEG activity is due to the different propagation times of locally synchronous ictal discharges from the seizure onset zone to other brain areas. Furthermore we speculate that the increase of correlation during the second half of the seizures may be causally related to seizure termination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据