4.5 Article

Host origin of plastid solute transporters in the first photosynthetic eukaryotes

期刊

GENOME BIOLOGY
卷 8, 期 10, 页码 -

出版社

BMC
DOI: 10.1186/gb-2007-8-10-r212

关键词

-

资金

  1. NIEHS NIH HHS [R01 ES013679, R01 ES013679-01] Funding Source: Medline
  2. NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES [R01ES013679] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Background: It is generally accepted that a single primary endosymbiosis in the Plantae (red, green (including land plants), and glaucophyte algae) common ancestor gave rise to the ancestral photosynthetic organelle (plastid). Plastid establishment necessitated many steps, including the transfer and activation of endosymbiont genes that were relocated to the nuclear genome of the 'host' followed by import of the encoded proteins into the organelle. These innovations are, however, highly complex and could not have driven the initial formation of the endosymbiosis. We postulate that the re- targeting of existing host solute transporters to the plastid fore- runner was critical for the early success of the primary endosymbiosis, allowing the host to harvest endosymbiont primary production. Results: We tested this model of transporter evolution by conducting a comprehensive analysis of the plastid permeome in Arabidopsis thaliana. Of 137 well-annotated transporter proteins that were initially considered, 83 that are broadly distributed in Plantae were submitted to phylogenetic analysis. Consistent with our hypothesis, we find that 58% of Arabidopsis transporters, including all carbohydrate transporters, are of host origin, whereas only 12% arose from the cyanobacterial endosymbiont. Four transporter genes are derived from a Chlamydia- like source, suggesting that establishment of the primary plastid likely involved contributions from at least two prokaryotic sources. Conclusion: Our results indicate that the existing plastid solute transport system shared by Plantae is derived primarily from host genes. Important contributions also came from the cyanobacterial endosymbiont and Chlamydia-like bacteria likely co-resident in the first algae.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据