4.7 Review

The lactose repressor system: paradigms for regulation, allosteric behavior and protein folding

期刊

CELLULAR AND MOLECULAR LIFE SCIENCES
卷 64, 期 1, 页码 3-16

出版社

SPRINGER BASEL AG
DOI: 10.1007/s00018-006-6296-z

关键词

lactose repressor; allostery; genetic regulation; transcription regulation; inducer; operator

资金

  1. NATIONAL CENTER FOR RESEARCH RESOURCES [P20RR017708] Funding Source: NIH RePORTER
  2. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [T32GM008280, R01GM022441] Funding Source: NIH RePORTER
  3. NCRR NIH HHS [P20 RR 17708] Funding Source: Medline
  4. NIGMS NIH HHS [GM22441, T32 GM008280, GM08280] Funding Source: Medline

向作者/读者索取更多资源

In 1961, Jacob and Monod proposed the operon model for gene regulation based on metabolism of lactose in Escherichia coli [1]. This proposal was followed by an explication of allosteric behavior by Monod and colleagues [2]. The operon model rationally depicted how genetic mechanisms can control metabolic events in response to environmental stimuli via coordinated transcription of a set of genes with related function (e.g. metabolism of lactose). The allosteric response found in the lactose repressor and many other proteins has been extended to a variety of cellular signaling pathways in all organisms. These two models have shaped our view of modern molecular biology and captivated the attention of a surprisingly broad range of scientists. More recently, the lactose repressor monomer was used as a model system for experimental and theoretical explorations of protein folding mechanisms. Thus, the lac system continues to advance our molecular understanding of genetic control and the relationship between sequence, structure and function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据