4.6 Article

Morphological and metabolic changes in the cortex of mice lacking the functional presynaptic active zone protein bassoon: A combined H-1-NMR spectroscopy and histochemical study

期刊

CEREBRAL CORTEX
卷 18, 期 4, 页码 890-897

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhm122

关键词

glutamine; H-1-NMR-spectroscopy; manganese-enhanced MRI; metabonomics; mouse mutant

向作者/读者索取更多资源

Mice lacking functional presynaptic active zone protein Bassoon are characterized by an enlarged cerebral cortex and an altered cortical activation pattern. This morphological and functional phenotype is associated with defined metabolic distortions as detected by a metabonomic approach using high-field (14.1 T) high-resolution H-1-nuclear magnetic resonance spectroscopy (MRS) in conjunction with statistical pattern recognition. Within the cortex but not in the cerebellum, concentrations of N-acetyl aspartate, glutamine, and glutamate are significantly reduced, whereas the majority of all other detectable low molecular metabolites are unchanged. The reduction of the neuron-specific metabolite N-acetyl aspartate in the cortex coincides with a significant decrease in neuronal density in cortical layer V. Comparing the neuron with glia cell densities across the cortex reveals cortex layer-dependent alterations in the ratio between both cell types. Whereas the ratio shifts significantly toward neurons in the cortical input layers IV, the ratio is reversed in cortical layer V. Consequently, the previously observed altered neuronal activation pattern in the cortex is reflected not only in defined cytoarchitectural anomalies but also in metabolic disturbances in the glutamine-glutamate and N-acetyl aspartate metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据