4.2 Article

OPR3 is expressed in phloem cells and is vital for lateral root development in Arabidopsis

期刊

CANADIAN JOURNAL OF PLANT SCIENCE
卷 93, 期 2, 页码 165-170

出版社

AGRICULTURAL INST CANADA
DOI: 10.4141/CJPS2012-149

关键词

Jasmonate; OPR3; GUS; lateral roots

资金

  1. China Natural Science Foundation (NSFC) [30870358, 31070207]
  2. Chinese University Scientific Fund [2009TD15]

向作者/读者索取更多资源

Li, S., Ma, J. and Liu, P. 2013. OPR3 is expressed in phloem cells and is vital for lateral root development in Arabidopsis. Can. J. Plant Sci. 93: 165-170. Jasmonates, a group of oxylipin phytohormones in angiosperms, play important roles in regulating plant growth and development and in responding to environmental stimuli. AtOPR3, a 12-oxo,phytodienoic acid (OPDA) reductase in Arabidopsis thaliana, has been proven to be vital in catalyzing jasmonate biosynthesis. Here, the temporal and spatial expression of AtOPR3 was investigated by promoter-GUS fusion in A. thaliana. In pOPR3::GUS transgenic plants, the GUS activity was detected in roots, leaves and all floral organs, and was highly induced by MeJA treatment. In addition, the GUS activity was principally detected in the phloem cells of the leaf veins. The sequence of the OPR3 promoter region was predicted to have 49 potential binding sites for transcription factors including the well-known Myc-like basic helix-loop-helix, GATA, MADS, MYB-like and Homeobox proteins. In consistent with an expression of OPR3 in lateral roots, there are more lateral roots in the opr3 mutant plants, in which OPR3 expression is knocking-out. In addition, the involvement of auxin biosynthesis in JA-regulated lateral root development is implied by our observation that the transcripts of ASA1, a gene involved in auxin biosynthesis, are decreased in opr3 plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据