4.3 Article Proceedings Paper

Calcium and the damage pathways in muscular dystrophy

期刊

出版社

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/Y09-058

关键词

Duchenne muscular dystrophy; mdx mouse; dystrophin; stretch-activated channels; TRPC1; intracellular calcium

向作者/读者索取更多资源

Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disease caused by the absence of the cytoskeletal protein dystrophin. Experiments on the mdx mouse, a model of DMD, have shown that mdx muscles are particularly susceptible to stretch-induced damage. In this review, we discuss evidence showing that a series of stretched contractions of mdx muscle fibres causes a prolonged increase in resting intracellular calcium concentration ([Ca2+](i)). The rise in [Ca2+](i) is caused by Calf entry through a class of stretch-activated channels (SAC(NSC)) for which one candidate gene is TRPC1. We review the evidence for activation of SAC(NSC) in muscle by reactive oxygen species (ROS) and suggest that stretch-induced ROS production is part of the pathway that triggers increased channel activity. When the TRPC1 gene was transfected into C2 myoblasts, expression occurred throughout the cell. Only when the TRPC1 gene was coexpressed with caveolin-3 did the TRPC1 protein express in the membrane. When TRPC I was expressed in the membrane, it could be activated by ROS to produce Ca2+ entry and this entry was inhibited by PP2, an inhibitor of src kinase. These results suggest that stretched contractions activate ROS production, which activates src kinase. Activity of this kinase causes opening of SACNSC and allows Ca2+ entry. This pathway appears to be a significant cause of muscle damage in DMD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据