4.7 Article

Laser-ablation ICP-MS analysis of siliceous rock glasses fused on an iridium strip heater using MgO dilution

期刊

MICROCHIMICA ACTA
卷 160, 期 1-2, 页码 153-163

出版社

SPRINGER WIEN
DOI: 10.1007/s00604-007-0819-7

关键词

iridium strip heater; LA-ICP-MS; geochemistry; trace elements; glass

向作者/读者索取更多资源

Trace element determination in rocks by fusion on an iridium strip heater followed by LA-ICP-MS analysis of the glass beads is extended here to SiO2-rich rocks; rapid fusion of samples with > 55 wt% SiO2 is facilitated by dilution by high purity MgO. The method developed here can rapidly and accurately determine numerous trace elements in a large range of rock compositions in a short time (about 50 samples/day). Systematic evaluation for a large range of rock compositions (natural rocks and reference materials AGV-2, GSP-2, JG-1a) with SiO2 contents between 45 and 80 wt% shows that reproducibility and accuracy within 10% can be routinely achieved for most of the 28 trace elements investigated (Rb, Sr, Cs, Ba, Ti, Zr, Hf, Nb, Ta, Sc, V, Cr, Ni, Pb, Th, U, REE). The 40 mg sample size is smaller than for XRF, INAA or solution-ICP-MS, detection limits are lower, and trace element palettes more complete than XRF and INAA. This microchemical method is thus attractive for the analysis of all natural geological materials as well as for experimental applications with small samples. Samples with SiO2-contents > 55 wt% require hot and long melting to achieve homogeneous glasses and eliminate all residual minerals, particularly refractory accessory phases. Melting conditions of 1600 degrees C and 20s for samples are recommended for SiO2 contents between 55 and 70wt%, whereas 1800 degrees C and 20-30 s are often required for samples with > 70 wt% SiO2. Problems are encountered for Pb and Cs due to volatilization on the Ir strip, for Sc due to interferences, and Zr and Hf due to their sequestration in refractory accessory minerals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据