4.1 Article

Viscous dissipation effect on mixed convection flow of a micropolar fluid over an exponentially stretching sheet

期刊

CANADIAN JOURNAL OF PHYSICS
卷 87, 期 4, 页码 359-368

出版社

CANADIAN SCIENCE PUBLISHING
DOI: 10.1139/P09-047

关键词

-

向作者/读者索取更多资源

Micropolar boundary-layer flow and heat transfer characteristics associated with a heated exponential stretching continuous sheet being cooled by a mixed convection flow are examined. The relevant heat transfer mechanisms are of interest in a wide variety of practical applications such as hot rolling, continuous casting, extrusion, and drawing. The wall temperature and stretching velocity are assumed to vary according to specific exponential forms. The contributions of buoyancy along with viscous dissipation on the convective transport in the boundary-layer region is analyzed in the opposing and assisting flow situations. Local similarity solutions are obtained for the boundary-layer equations governing the problem. A parametric study of the mixed convection parameter xi, the micropolar parameter Delta, the Eckert number Ec, the parameter of temperature distribution n, and Prandtl number Pr is conducted and a representative set of numerical results for the velocity, angular velocity, temperature profiles, local skin friction coefficient, wall couple stress parameter, and local Nusselt number are illustrated graphically to show typical trends of the solutions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据