4.5 Article

Investigating the transport dynamics and the properties of bedload material with a hydro-acoustic measuring system

期刊

EARTH SURFACE PROCESSES AND LANDFORMS
卷 33, 期 1, 页码 152-163

出版社

WILEY-BLACKWELL
DOI: 10.1002/esp.1576

关键词

hydrophones; hydro-acoustics; sediment transport; bedload; flood events

向作者/读者索取更多资源

This article deals with the following two questions. Are acoustic measurements in running waters appropriate for a highly resolved investigation of the bedload transport? Which characterizations of the bedload regarding mass and shape are possible via the acoustic signals? The signals were recorded by means of data recorders (Tascam Inc. DAPI Portable Data Recorder) and hydrophones (International Transducer Corp. ITC-4001 A). The ITC-4001 is a shallow water onmidirectional transducer containing a flexural disc transducer utilizing Channelite-5400 ceramics mounted in a rugged corrosion-resistant housing. These hydrophones were screwed onto the bottom side of stainless steel plates, serving as a contact surface for the bedload in motion above them. After more than 100 series of tests in the laboratory, which indicated the basic relations between the dimension, shape and weight of the bedload and the resulting signal, field tests of the measuring system were conducted. By artificially produced flood waves in the small brooks Riverisbach, Olewiger Bach and by a winter flood wave in the River Moselle, it is possible to elaborate similar structures of the signal course of the bedload movement. The highest transport rates can be observed at the beginning of the increasing limbs and behind the peaks of the waves. At the beginning of the waves, the increasing transport power of the water and the loose material can be considered as the cause for this result. The high stream velocity behind the wave peaks explains the increase in the bedload transport so that material from the channel beds is unfastened and will be mobilized. The characterization of the bedload regarding the shape and mass is still limited regarding the field measurements and could be solved only for homogeneous grain sizes and single stones under laboratory conditions. Copyright (c) 2007 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据