4.4 Article

Electro-mechanical impedance-based wireless structural health monitoring using PCA-data compression and k-means clustering algorithms

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1045389X07077400

关键词

electromechanical impedance; wireless; structural health monitoring; on-board active sensor system; self-sensing macro-fiber composite patch; principal component analysis; k-means clustering

向作者/读者索取更多资源

This article presents a practical method for an electro-mechanical impedance-based wireless structural health monitoring (SHM), which incorporates the principal component analysis (PCA)-based data compression and k-means clustering-based pattern recognition. An on-board active sensor system, which consists of a miniaturized impedance measuring chip (AD5933) and a self-sensing macro-fiber composite (MFC) patch, is utilized as a next-generation toolkit of the electromechanical impedance-based SHM system. The PCA algorithm is applied to the raw impedance data obtained from the MFC patch to enhance a local data analysis-capability of the on-board active sensor system, maintaining the essential vibration characteristics and eliminating the unwanted noises through the data compression. Then, the root-mean square-deviation (RMSD)-based damage detection result using the PCA-compressed impedances is compared with the result obtained from the raw impedance data without the PCA preprocessing. Furthermore, the k-means clustering-based unsupervised pattern recognition, employing only two principal components, is implemented. The effectiveness of the proposed methods for a practical use of the electromechanical impedance-based wireless SHM is verified through an experimental study consisting of inspecting loose bolts in a bolt-jointed aluminum structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据