4.5 Review

Optofluidics: a novel generation of reconfigurable and adaptive compact architectures

期刊

MICROFLUIDICS AND NANOFLUIDICS
卷 4, 期 1-2, 页码 81-95

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10404-007-0222-z

关键词

microfluidic; microphotonic; tunability; integration; optical tweezers

向作者/读者索取更多资源

The integration of microfluidics and microphotonics brings the ability to tune and reconfigure ultra-compact optical devices. This flexibility is essentially provided by three characteristics of fluids that are scalable at the micron-scale: fluid mobility, large ranges of index modulation, and abrupt interfaces that can be easily reshaped. Several examples of optofluidic devices are presented here to illustrate the achievement of flexible devices on (semi) planar and compact platforms. First, we report an integrated geometry for a compact and tunable interferometer that exploits a sharp and mobile air/water interface. We then describe a class of optically controlled devices that rely on the actuation of optically trapped micron-sized objects within a fluid environment. The last architecture results from the infiltration of photonic crystal devices with fluids. This produces tunable and reconfigurable photonic devices, like optical switches. Higher degrees of functionality could be achieved with sophisticated optofluidic platforms that associate complex microfluidic delivery and mixing schemes with microphotonic devices. Moreover, optofluidics offers new opportunities for realizing highly responsive and compact sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据