4.0 Article

Imaging the Nechako Basin, British Columbia, using ambient seismic noise

期刊

CANADIAN JOURNAL OF EARTH SCIENCES
卷 48, 期 6, 页码 1038-1049

出版社

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/E11-007

关键词

-

资金

  1. National Research Council of Canada
  2. University of Manitoba

向作者/读者索取更多资源

The Nechako Basin in British Columbia, Canada is suspected to have hydrocarbon potential. However, it has been a difficult basin to explore because of the presence of Tertiary volcanic outcrop. The volcanic outcrop makes the use of conventional seismic exploration methods difficult owing to a strong velocity inversion at its base. An alternative is the passive source method known as ambient noise surface wave tomography. The method, which examines the high-frequency surface wave field that is obtained from noise analysis, is sensitive to large-scale crustal structure and has been successfully applied to measuring the depths of sedimentary basins. Station-to-station Green's functions within the basin were estimated by cross-correlating the vertical components of the seismic noise data recorded by 12 POLARIS (Portable Observatories for Lithosphere Analysis and Research Investigating Seismicity) and CNSN (Canadian National Seismgraph Network) seismic stations between September 2006 and November 2007. The resulting Green's functions were dominated by Rayleigh waves. The dispersion characteristics of the Rayleigh waveforms were measured within the microseismic band. Inversion of the dispersion curves produced 1-D and 2-D thickness models and 2-D group velocity models for the Nechako Basin and its surrounding region. The velocity models indicate two low group velocity structures within the basin that might represent sedimentary packages, and some pockets of high-velocity zones that show the presence of volcanic rocks within and on the basin. The thickness models indicated the presence of about six different velocity layers, in which the average thickness of the basin and the crust are similar to 4.8 and 30-34 km, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据