4.2 Article

Dihydroxyacetone metabolism in Salinibacter ruber and in Haloquadratum walsbyi

期刊

EXTREMOPHILES
卷 12, 期 1, 页码 125-131

出版社

SPRINGER TOKYO
DOI: 10.1007/s00792-007-0114-x

关键词

Salinibacter; Haloquadratum; dihydroxyacetone; glycerol; incomplete oxidation

向作者/读者索取更多资源

The extremely halophilic bacterium Salinibacter ruber inhabits saltern crystallizer ponds worldwide, together with the square archaeon Haloquadratum walsbyi. Cultures of Salinibacter have been shown to convert up to 20% of the glycerol added to a not previously characterized overflow product. We here identify this product of incomplete glycerol oxidation by Salinibacter as dihydroxyacetone. Genomic information suggests that H. walsbyi possesses an efficient uptake system for dihydroxyacetone, and we show here that dihydroxyacetone is indeed metabolized by Haloquadratum cultures, as well as by the heterotrophic prokaryotic community of the saltern crystallizer ponds in Eilat, Israel, dominated by Haloquadratum-like cells. In the absence of glycerol, Salinibacter also takes up dihydroxyacetone. Degradation of glycerol, produced in hypersaline lakes as an osmotic solute by the green alga Dunaliella salina may thus involve dihydroxyacetone as an intermediate, which can then be taken up by different types of heterotrophs present in the environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据