4.1 Article

FGF-2 increases osteogenic and chondrogenic differentiation potentials of human mesenchymal stem cells by inactivation of TGF-beta signaling

期刊

CYTOTECHNOLOGY
卷 56, 期 1, 页码 1-7

出版社

SPRINGER
DOI: 10.1007/s10616-007-9092-1

关键词

mesenchymal stem cells; fibroblast growth factor-2; insulin-like growth factor-I; transforming growth factor-beta; osteogenic differentiation; chondrogenic differentiation

向作者/读者索取更多资源

Human mesenchymal stem cells (hMSCs) are able to self-replicate and differentiate into a variety of cell types including osteoblasts, chondrocytes, adipocytes, endothelial cells, and muscle cells. It was reported that fibroblast growth factor-2 (FGF-2) increased the growth rate and multidifferentiation potentials of hMSCs. In this study, we investigated the genes involved in the promotion of osteogenic and chondrogenic differentiation potentials of hMSCs in the presence of FGF-2. hMSCs were maintained in the medium with FGF-2. hMSCs were harvested for the study of osteogenic or chondrogenic differentiation potential after 15 days' culture. To investigate osteogenic differentiation, the protein levels of alkaline phosphatase (ALP) and the mRNA expression levels of osteocalcin were measured after the induction of osteogenic differentiation. Moreover, the investigation for chondrogenic differentiation was performed by measuring the mRNA expression levels of type II and type X collagens after the induction of chondrogenic differentiation. The expression levels of ALP, type II collagen, and type X collagen of hMSCs cultured with FGF-2 were significantly higher than control. These results suggested that FGF-2 increased osteogenic and chondrogenic differentiation potentials of hMSCs. Furthermore, microarray analysis was performed after 15 days' culture in the medium with FGF-2. We found that the overall insulin-like growth factor-I (IGF-I) and transforming growth factor-beta (TGF-beta) signaling pathways were inactivated by FGF-2. These results suggested that the inactivation of IGF-I and TGF-beta signaling promotes osteogenic and chondrogenic differentiation potential of hMSCs in the presence of FGF-2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据