4.7 Review

Geodesy and relativity

期刊

JOURNAL OF GEODESY
卷 82, 期 3, 页码 133-145

出版社

SPRINGER
DOI: 10.1007/s00190-007-0168-7

关键词

relativity; reference systems; geodesy; space-geodetic techniques; modelling; parameter determination

向作者/读者索取更多资源

Relativity, or gravitational physics, has widely entered geodetic modelling and parameter determination. This concerns, first of all, the fundamental reference systems used. The Barycentric Celestial Reference System (BCRS) has to be distinguished carefully from the Geocentric Celestial Reference System (GCRS), which is the basic theoretical system for geodetic modelling with a direct link to the International Terrestrial Reference System (ITRS), simply given by a rotation matrix. The relation to the International Celestial Reference System (ICRS) is discussed, as well as various properties and relevance of these systems. Then the representation of the gravitational field is discussed when relativity comes into play. Presently, the so-called post-Newtonian approximation to GRT (general relativity theory) including relativistic effects to lowest order is sufficient for practically all geodetic applications. At the present level of accuracy, space-geodetic techniques like VLBI (Very Long Baseline Interferometry), GPS (Global Positioning System) and SLR/LLR (Satellite/Lunar Laser Ranging) have to be modelled and analysed in the context of a post-Newtonian formalism. In fact, all reference and time frames involved, satellite and planetary orbits, signal propagation and the various observables (frequencies, pulse travel times, phase and travel-time differences) are treated within relativity. This paper reviews to what extent the space-geodetic techniques are affected by such a relativistic treatment and where-vice versa-relativistic parameters can be determined by the analysis of geodetic measurements. At the end, we give a brief outlook on how new or improved measurement techniques (e.g., optical clocks, Galileo) may further push relativistic parameter determination and allow for refined geodetic measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据