4.1 Article

A water potential based on multipole moments trained by machine learning - Reducing maximum energy errors

期刊

CANADIAN JOURNAL OF CHEMISTRY
卷 88, 期 11, 页码 1104-1111

出版社

CANADIAN SCIENCE PUBLISHING
DOI: 10.1139/V10-075

关键词

-

资金

  1. University of Manchester Intellectual Property Limited (UMIP)

向作者/读者索取更多资源

A potential that strives to represent the Coulomb interaction realistically must include polarization. In our approach, three decisions were made to accomplish this: (i) define an atom according to quantum chemical topology (QCT), (ii) express the interaction between atoms via their multipole moments, and (iii) use machine learning to capture the response of an atomic multipole moment to a change in this atom's environment. This approach avoids explicit (distributed) polarizabilities and eliminates the problem of polarization catastrophe. Previously, we showed (Phys. Chem. Chem. Phys. 2009, 11, 6365) that a machine learning method called kriging predicted atomic multipole moments more accurately than competing machine learning methods. This was established for the atoms of a central water molecule in water clusters, from the dimer to the hexamer. The prediction errors in all multipole moments were collectively assessed by errors in total interaction energy, for thousands of clusters configurations. Here, we target the maximum errors, with an eye on reducing the worst predictions that the potential may return. We demonstrate proof-of-principle for the water dimer using local kriging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据