4.7 Article

Dental Occlusal Changes Induce Motor Cortex Neuroplasticity

期刊

JOURNAL OF DENTAL RESEARCH
卷 94, 期 12, 页码 1757-1764

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/0022034515602478

关键词

plasticity; orofacial; trigeminal; muscle; teeth; sensorimotor

资金

  1. Faculty of Dentistry Bertha Rosenstadt Endowment Fund
  2. Canadian Institutes of Health Research [MOP4918]
  3. Canadian Foundation for Innovation
  4. Ontario Innovation Trust
  5. Ministry of Technology and Innovation
  6. Canada Research Chair program

向作者/读者索取更多资源

Modification to the dental occlusion may alter oral sensorimotor functions. Restorative treatments aim to restore sensorimotor functions; however, it is unclear why some patients fail to adapt to the restoration and remain with sensorimotor complaints. The face primary motor cortex (face-M1) is involved in the generation and control of orofacial movements. Altered sensory inputs or motor function can induce face-MI neuroplasticity. We took advantage of the continuous eruption of the incisors in Sprague-Dawley rats and used intracortical microstimulation (ICMS) to map the jaw and tongue motor representations in face-Ml. Specifically, we tested the hypothesis that multiple trimming of the right mandibular incisor, to keep it out of occlusal contacts for 7 d, and subsequent incisor eruption and restoration of occlusal contacts, can alter the ICMS-defined features of jaw and tongue motor representations (i.e., neuroplasticity). On days 1, 3, 5, and 7, the trim and trim-recovered groups had 1 to 2 mm of incisal trimming of the incisor; a sham trim group had buccal surface trimming with no occlusal changes; and a naive group had no treatment. Systematic mapping was performed on day 8 in the naive, trim, and sham trim groups and on day 14 in the trim-recovered group. In the trim group, the tongue onset latency was shorter in the left face-M1 than in the right face-M1 (P <.001). In the trim-recovered group, the number of tongue sites and jaw/ tongue overlapping sites was greater in the left face-M1 than in the right face-M1 (P = 0.0032, 0.0016, respectively), and the center of gravity was deeper in the left than in the right face-M1 (P = 0.026). Therefore, incisor trimming and subsequent restoration of occlusal contacts induced face-M1 neuroplasticity, reflected in significant disparities between the left and right face-M1 in some ICMS-defined features of the tongue motor representations. Such neuroplasticity may reflect or contribute to subjects' ability to adapt their oral sensorimotor functions to an altered dental occlusion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据