4.5 Review

Transport and egress of herpes simplex virus in neurons

期刊

REVIEWS IN MEDICAL VIROLOGY
卷 18, 期 1, 页码 35-51

出版社

WILEY
DOI: 10.1002/rmv.560

关键词

-

类别

向作者/读者索取更多资源

The mechanisms of axonal transport of the alphaherpesviruses, HSV and pseudorabies virus (PrV), in neuronal axons are of fundamental interest, particularly in comparison with other viruses, and offer potential sites for antiviral intervention or development of gene therapy vectors. These herpesviruses are transported rapidly along microtubules (MTs) in the retrograde direction from the axon terminus to the dorsal root ganglion and then anterogradely in the opposite direction. Retrograde transport follows fusion and deenvelopment of the viral capsid at the axonal membrane followed by loss of most of the tegument proteins and then binding of the capsid via one or more viral proteins (VPs) to the retrograde molecular motor dynein. The HSV capsid protein pUL35 has been shown to bind to the dynein light chain Tctex1 but is likely to be accompanied by additional dynein binding of an inner tegument protein. The mechanism of anterograde transport is much more controversial with different processes being claimed for PrV and HSV: separate transport of HSV capsid/tegument and glycoproteins versus PrV transport as an enveloped virion. The controversy has not been resolved despite application, in several laboratories, of confocal microscopy (CFM), realtime fluorescence with viruses dual labelled on capsid and glycoprotein, electron microscopy in situ and immunoelectron microscopy. Different processes for each virus seem counterintuitive although they are the most divergent in the alphaherpesvirus subfamily. Current hypotheses suggest that unenveloped HSV capsids complete assembly in the axonal growth cones and varicosities, whereas with PrV unenveloped capsids are only found travelling in a retrograde direction. Copyright (c) 2007 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据