4.5 Article

Evaluation of the impact of pore fluid chemistry on the hydromechanical behaviour of clay-based sealing materials

期刊

CANADIAN GEOTECHNICAL JOURNAL
卷 48, 期 2, 页码 199-213

出版社

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/T10-064

关键词

pore fluid concentration; hydromechanical performance; one-dimensional (1D)-consolidation tests; light backfill and dense backfill; effective montmorillonite dry density

向作者/读者索取更多资源

The results of an experimental program undertaken to evaluate the impact of pore fluid salinity on the hydromechanical performance of light and dense backfill materials are presented. Light and dense backfills are engineered barrier materials that are being examined in the Canadian concept for storage of spent fuel in a deep geological repository. The current research investigates the impact of pore fluid chemistry on the swelling, compressibility, stiffness, and hydraulic conductivity parameters of light and dense backfills that are required as material parameters for analysis and design. In these tests, pore fluid chemistry was selected to represent groundwater within potential host units including granite and limestone rock. Results show that the performance of light backfill is significantly affected by changes in pore fluid chemistry. The swell potential of light backfill decreases with increasing salinity of the solution. The hydraulic conductivity decreases with increasing effective montmorillonite dry density and specimens saturated with saline solution have higher hydraulic conductivity than those saturated with distilled water. Conversely, the behaviour of dense backfill is governed mainly by the crushed granite component and therefore changes to the pore fluid chemistry have relatively little effect. Results of dense backfill tests confirm the material performance as a sealing material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据