4.6 Article

A micro-macro approach to modeling progressive damage in composite structures

期刊

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1056789506067941

关键词

progressive damage; multiscale damage; element-failure method; strain invariant failure theory; micromechanical amplification

向作者/读者索取更多资源

Modeling progressive damage in composite materials and structures poses considerable challenges because damage is, in general, complex and involves multiple modes such as delamination, transverse cracking, fiber breakage, fiber pullout, etc. Clearly, damage in composites can be investigated at different length scales, ranging from the micromechanical to the macromechanical specimen and structural scales. In this article, a simple but novel finite-element-based method for modeling progressive damage in fiber-reinforced composites is presented. The element- failure method (EFM) is based on the simple idea that the nodal forces of an element of a damaged composite material can be modified to reflect the general state of damage and loading. This has an advantage over the usual material property degradation approaches, i.e., because the stiffness matrix of the element is not changed, computational convergence is theoretically guaranteed, resulting in a robust modeling tool. The EFM, when employed with suitable micromechanics-ased failure criteria, may be a practical method for mapping damage initiation and propagation in composite structures. In this article, we present a micromechanical analysis for a new failure criterion called the strain invariant failure theory and the application of the EFM in the modeling of open-hole tension specimens. The micromechanical analysis yields a set of amplification factors, which are used to establish a set of micromechanically enhanced strain invariants for the failure criterion. The effects of material properties and volume fraction on the amplification factors are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据