3.9 Article

Sorting Mechanism of Peptide Hormones and Biogenesis Mechanism of Secretory Granules by Secretogranin III, a Cholesterol-Binding Protein, in Endocrine Cells

期刊

CURRENT DIABETES REVIEWS
卷 4, 期 1, 页码 31-38

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/157339908783502406

关键词

Sorting; Secretory granules; Secretogranin III; Chromogranin A; Carboxypeptidase E; Cholesterol

资金

  1. Ministry of Education, Culture, Science, Sports, and Technology

向作者/读者索取更多资源

In the present review, we discuss the sorting mechanism of peptide hormones and the biogenesis mechanism of secretory granules in view of the significance of the high cholesterol composition of secretory granule membranes. Peptide hormones and graninfamily proteins are sorted to immature budding granules at the trans-Golgi network in neuroendocrine cells. Two models have been proposed for granule protein sorting: aggregation-mediated sorting and receptor-mediated sorting. In the aggregation-mediated sorting model, granin-family proteins such as chromogranin A and B form aggregates with peptide hormones in weakly acidic, high calcium milieu of the budding granules. Chromogranins have a disulfide loop at their N-terminal at which they bind to the budding granular membrane, and bring hormones to the granules. In the receptor-mediated sorting model, carboxypeptidase E and/or secretogranin III function as a sorting receptor for peptide hormones. They bind peptide hormones, such as proopiomelanocortin, and have a high-cholesterolbinding domain. Since secretory granule membranes contain high levels of cholesterol, peptide hormones are brought to the secretory granules by these receptors. Although the two models have been conflicting, we suggest that both are cooperative and compensating each other for the sorting of peptide hormones and the biogenesis of secretory granules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据