4.5 Article Proceedings Paper

Structural stability of intermetallic phases in the Sn-Ti system

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.calphad.2008.08.001

关键词

Enthalpy of formation; First-principle electron theory; Tin-titanium alloys; Intermetallic compounds

向作者/读者索取更多资源

The total energies of intermetallic compounds in the Sn-Ti system are Calculated employing electronic density-functional theory (DFT) using pseudopotentials constructed by the projector augmented waves (PAW) method in the generalized gradient (GGA) approximation for the exchange and correlation energy. The calculations are performed for the experimentally observed compounds at their ideal stoichiometry as well as for structures which are stable in systems of early transition metals or rare earth elements with p-elements Of Columns IIIB, IVB, and VB. The calculated formation enthalpy of the hexagonal Sn(5)Ti(6) compound is slightly less exothermic than the value obtained by direct reaction calorimetry. For the stable intermetallic compounds, the calculated zero-temperature lattice parameters agree well with those obtained experimentally at ambient temperature. More, for stable phases with unit cell-internal degree(s) of freedom, the results of ab initio calculations show good agreement when compared with data obtained by structural analysis of X-ray diffraction. The composition dependence of the enthalpies of formation is slightly asymmetric. The electronic densities of state of the D8(8)-Sn(3)Ti(5) Compound have been Computed; the curve shows the hybridization of Sri 5p states with Ti 3d states. The stability of the intermetallic compounds in the Ti-Sn system is clue to this hybridization. (c) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据