4.4 Article

Physiological Effects of Microgravity on Bone Cells

期刊

CALCIFIED TISSUE INTERNATIONAL
卷 94, 期 6, 页码 569-579

出版社

SPRINGER
DOI: 10.1007/s00223-014-9851-x

关键词

Bone cell; Microgravity; Simulated microgravity; Physiological effect; Bone loss; Mechanotransduction

资金

  1. Natural Science Foundation of China [31370845]
  2. National Basic Research Program of China [2011CB710903]
  3. New Century Excellent Talents in University [NCET-12-0469]

向作者/读者索取更多资源

Life on Earth developed under the influence of normal gravity (1g). With evidence from previous studies, scientists have suggested that normal physiological processes, such as the functional integrity of muscles and bone mass, can be affected by microgravity during spaceflight. During the life span, bone not only develops as a structure designed specifically for mechanical tasks but also adapts for efficiency. The lack of weight-bearing forces makes microgravity an ideal physical stimulus to evaluate bone cell responses. One of the most serious problems induced by long-term weightlessness is bone mineral loss. Results from in vitro studies that entailed the use of bone cells in spaceflights showed modification in cell attachment structures and cytoskeletal reorganization, which may be involved in bone loss. Humans exposed to microgravity conditions experience various physiological changes, including loss of bone mass, muscle deterioration, and immunodeficiency. In vitro models can be used to extract valuable information about changes in mechanical stress to ultimately identify the different pathways of mechanotransduction in bone cells. Despite many in vivo and in vitro studies under both real microgravity and simulated conditions, the mechanism of bone loss is still not well defined. The objective of this review is to summarize the recent research on bone cells under microgravity conditions based on advances in the field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据