4.6 Article

Star formation in accretion discs: from the Galactic center to active galactic nuclei

期刊

ASTRONOMY & ASTROPHYSICS
卷 477, 期 2, 页码 419-435

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20078191

关键词

galaxies : quasars : general; Galaxy : center; accretion; accretion disks; galaxies : Seyfert

向作者/读者索取更多资源

Context. Keplerian accretion discs around massive black holes (MBHs) are gravitationally unstable beyond a few hundredths of a parsec, and they should collapse to form stars. It has indeed been shown recently that an accretion/star formation episode took place a few million years ago in the Galactic center (GC). This raises the question of how the disc can survive in AGN and quasars and continue to transport matter towards the black hole. Aims. We study the accretion/star formation process in quasars and AGN with one aim in mind: to show that a spectrum similar to the observed one can be produced by the disc. Methods. We compute models of stationary accretion discs that are either continuous or clumpy. Continuous discs must be maintained in a state of marginal stability so that the rate of star formation remains modest and the disc is not immediately destroyed. The disc then requires additional heating and additional transport of angular momentum. In clumpy discs, the momentum transport is provided by cloud interactions. Results. Non-viscous heating can be provided by stellar illumination, but in the case of continuous discs, even momentum transport by supernovae is insufficient for sustaining a marginal state, except at the very periphery of the disc. In clumpy discs it is possible to account for the required accretion rate through interactions between clouds, but this model is unsatisfactory because its parameters are tightly constrained without any physical justification. Conclusions. Finally one must appeal to non-stationary discs with intermittent accretion episodes like those that occurred in the GC, but such a model is probably not applicable either to luminous high redshift quasars or to radio-loud quasars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据