4.8 Article

Electroosmotic flow in nanotubes with high surface charge densities

向作者/读者索取更多资源

The ion distribution and electroosmotic flow of sodium chlorine solutions confined in cylindrical nanotubes with high surface charge densities are studied with molecular dynamics (MD). To obtain a more practical physical model for electroosmotic driven flow in a nanoscale tube, the MD simulation process consists of two steps. The first step is used to equilibrate the system and to obtain a more realistic ion distribution in the solution under different surface charge densities. Then, an external electric field is acted to drive the liquids. The simulation results indicate that with the increase of the surface charge density, both the thickness of the electric double layer and the peak height of the counterion density increase. However, the phenomenon of charge inversion does not occur even as the surface charge density increases to -0.34 C/m(2), which is rather difficult to reach for real materials in practical situations. This simulation result confirms the recent experimental observation that monovalent ions of sufficiently high concentrations can reduce or even cancel the charge inversion occurred in the case of multivalent ions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据