4.2 Article

New insights into the initiation and venting of the Bronze-Age eruption of Santorini (Greece), from component analysis

期刊

BULLETIN OF VOLCANOLOGY
卷 76, 期 2, 页码 -

出版社

SPRINGER
DOI: 10.1007/s00445-014-0794-x

关键词

Minoan eruption; Santorini; Ignimbrite; Caldera volcano; Eruption triggering

向作者/读者索取更多资源

The late-seventeenth century BC Minoan eruption of Santorini discharged 30-60 km(3) of magma, and caldera collapse deepened and widened the existing 22 ka caldera. A study of juvenile, cognate, and accidental components in the eruption products provides new constraints on vent development during the five eruptive phases, and on the processes that initiated the eruption. The eruption began with subplinian (phase 0) and plinian (phase 1) phases from a vent on a NE-SW fault line that bisects the volcanic field. During phase 1, the magma fragmentation level dropped from the surface to the level of subvolcanic basement and magmatic intrusions. The fragmentation level shallowed again, and the vent migrated northwards (during phase 2) into the flooded 22 ka caldera. The eruption then became strongly phreatomagmatic and discharged low-temperature ignimbrite containing abundant fragments of post-22 ka, pre-Minoan intracaldera lavas (phase 3). Phase 4 discharged hot, fluidized pyroclastic flows from subaerial vents and constructed three main ignimbrite fans (northwestern, eastern, and southern) around the volcano. The first phase-4 flows were discharged from a vent, or vents, in the northern half of the volcanic field, and laid down lithic-block-rich ignimbrite and lag breccias across much of the NW fan. About a tenth of the lithic debris in these flows was subvolcanic basement. New subaerial vents then opened up, probably across much of the volcanic field, and finer-grained ignimbrite was discharged to form the E and S fans. If major caldera collapse took place during the eruption, it probably occurred during phase 4. Three juvenile components were discharged during the eruption-a volumetrically dominant rhyodacitic pumice and two andesitic components: microphenocryst-rich andesitic pumices and quenched andesitic enclaves. The microphenocryst-rich pumices form a textural, mineralogical, chemical, and thermal continuum with co-erupted hornblende diorite nodules, and together they are interpreted as the contents of a small, variably crystallized intrusion that was fragmented and discharged during the eruption, mostly during phases 0 and 1. The microphenocryst-rich pumices, hornblende diorite, andesitic enclaves, and fragments of pre-Minoan intracaldera andesitic lava together form a chemically distinct suite of Ba-rich, Zr-poor andesites that is unique in the products of Santorini since 530 ka. Once the Minoan magma reservoir was primed for eruption by recharge-generated pressurization, the rhyodacite moved upwards by exploiting the plane of weakness offered by the preexisting andesite-diorite intrusion, dragging some of the crystal-rich contents of the intrusion with it.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据