4.2 Article

Evaluating fracture patterns within a resurgent caldera: Campi Flegrei, Italy

期刊

BULLETIN OF VOLCANOLOGY
卷 72, 期 5, 页码 623-638

出版社

SPRINGER
DOI: 10.1007/s00445-010-0347-x

关键词

Caldera; Resurgence; Bradyseism; Fractures; Campi Flegrei

资金

  1. INGV
  2. Dipartimento Protezione Civile, Italy [INGV-DPC V3-2]

向作者/读者索取更多资源

Understanding deformation of active calderas allows their dynamics to be defined and their hazard mitigated. The Campi Flegrei resurgent caldera (Italy) is one of the most active and hazardous volcanoes in the world, characterized by post-collapse resurgence, eruptions, ground deformation, and seismicity. An original structural analysis provides an overview of the main fracture zones. NW-SE and NE-SW fractures (normal or transtensive faults and extensional fractures) predominate along the rim and within the caldera, suggesting a regional control, both during and after the collapses. While the NE-SW fractures are ubiquitous in the deposits of the last similar to 37 ka, NW-SE fractures predominate in the last 4.5 ka, during resurgence. The most recently (< 4.5 ka) strained area lies in the caldera center (Solfatara area), where the faults, with an overall similar to ENE-WSW extension direction, appear to be associated with the bending due to resurgence. Solfatara lies immediately to the east of the most uplifted part of the caldera (Pozzuoli area), where domes form and culminate both on the long-term (resurgence, accompanied by volcanic activity) and short-term deformation (1982-1984 bradyseism, accompanied by seismic and hydrothermal activity). Similar volcano-tectonic behavior characterizes the short- and long-term uplifts, and only the intensity of the tectonic and volcanic activity varies, being related to varying amounts of uplift. Seismicity and hydrothermal manifestations occur during the bradyseisms, with moderate uplift, while surface faulting and eruptions occur during resurgence, with higher uplift. The features observed at Campi Flegrei are found at other major calderas, suggesting consistent behavior of large magmatic systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据