4.6 Article

The interaction of stellar objects within a common envelope

期刊

ASTROPHYSICAL JOURNAL LETTERS
卷 672, 期 1, 页码 L41-L44

出版社

UNIV CHICAGO PRESS
DOI: 10.1086/526343

关键词

binaries : close; hydrodynamics; stars : evolution

向作者/读者索取更多资源

We use high-resolution, three-dimensional hydrodynamic simulations to study the hydrodynamic and gravitational interaction between stellar companions embedded within a differentially rotating common envelope. We evaluate the contributions of the nonaxisymmetric gravitational tides and ram pressure forces to the drag force and, hence, to the dissipation rate and the mass accumulated onto the stellar companion. We find that the gravitational drag dominates the hydrodynamic drag during the inspiral phase, implying that a simple prescription based on a gravitational capture radius significantly underestimates the dissipation rate and overestimates the inspiral decay timescale. Although the mass accretion rate fluctuates significantly, we observe a secular trend leading to an effective rate that is significantly less than the rate based on a gravitational capture radius. We discuss the implications of these results within the context of accretion by compact objects in the common-envelope phase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据