4.4 Article Proceedings Paper

Zn-doping of GaAs nanowires grown by Aerotaxy

期刊

JOURNAL OF CRYSTAL GROWTH
卷 414, 期 -, 页码 181-186

出版社

ELSEVIER
DOI: 10.1016/j.jcrysgro.2014.09.051

关键词

Nanostructures; Metalorganic vapour phase epitaxy; Arsenates; Gallium compounds; Nanomaterials; Semiconducting III-V materials

资金

  1. Swedish Research Council (VR)
  2. Swedish Foundation for Strategic Research (SSF)
  3. Knut and Alice Wallenberg Foundation (KAW), Sweden
  4. VINNOVA, Sweden

向作者/读者索取更多资源

Nanowires were grown by means of a novel aerosol-based method called Aerotaxy. Here an aerosol of Au catalyst nanoparticles in N-2 is mixed with MOVPE precursors in a flow-through reactor at atmospheric pressure, whereby nanowires are produced continuously in high concentrations. We demonstrate the possibility of in situ doping of the NWs and the realization of well-controlled p-type GaAs nanowires using this Aerotaxy method. By controlling the cracking and concentration of the precursors, p-doped GaAs nanowires could be grown exhibiting a wide range of Zn doping levels. DEZn was used as the dopant source and the injected DEZn/TMGa ratio was varied from 0.1% to 3.4%. The morphology, the crystalline structure and the composition of the nanowires were studied using SEM, TEM and XEDS. The nanowires were grown straight without any significant tapering and this ideal morphology could be maintained up to an injected DEZn/TMGa ratio of 3.4%. The nanowires typically grew in the [111] direction with a pure zincblende structure, but by increasing the DEZn flow the number of twinning defects increased which we ascribe to Zn incorporation. Elemental analysis shows a high Zn content in the catalyst particle and also a gradient in the Zn content along the nanowire. The samples were analyzed optically using photoluminescence (PL). From the result we estimated the free hole concentration induced by Zn acceptors to be 1 x 10(20) cm(-3) for DEZn/TMGa ratio of 34%. To our knowledge this is the first report on in situ doping of GaAs nanowires grown by Aerotaxy. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据